

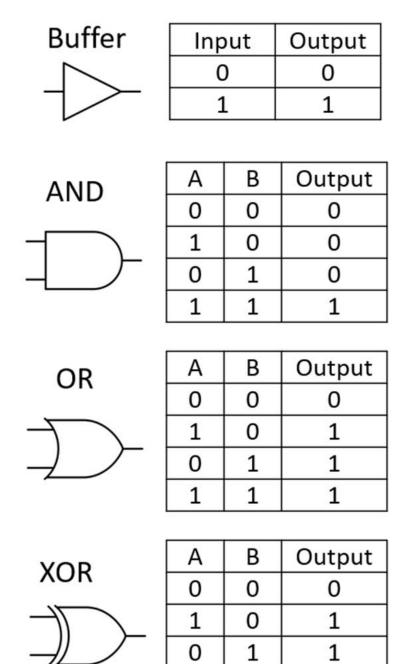
Chapter 10

BOOLEAN LOGIC

Content overview *Candidates study the following topics:*

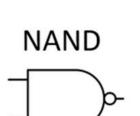
Computer systems

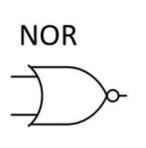
- 1. Data representation
- 2. Data transmission
- 3. Hardware
- 4. Software
- 5. The internet and its uses
- 6. Automated and emerging technologies
- Algorithms, programming and logic
- 7. Algorithm design and problem colving
- 8. Programming
- 9. Databases
- 10. Boolean logic 🗲


1. the identification, definition, symbols and functions of the standard logic gates:

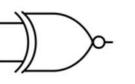
NOT, AND, OR, NAND, NOR and XOR

- 2. how to use logic gates to create logic circuits from:
- \circ a given problem
- \circ a logic expression
- o a truth table
- 3. how to complete truth tables from:
- \circ a given problem
- \circ a logic expression
- o a logic circuit
- 4. how to write a logic expression from:
- \circ a given problem
- o a logic circuit
- \circ a truth table.


In this chapter you will learn about:



Input	Output
0	1
1	0



Α	В	Output
0	0	1
1	0	1
0	1	1
1	1	0

А	В	Output
0	0	1
1	0	0
0	1	0
1	1	0

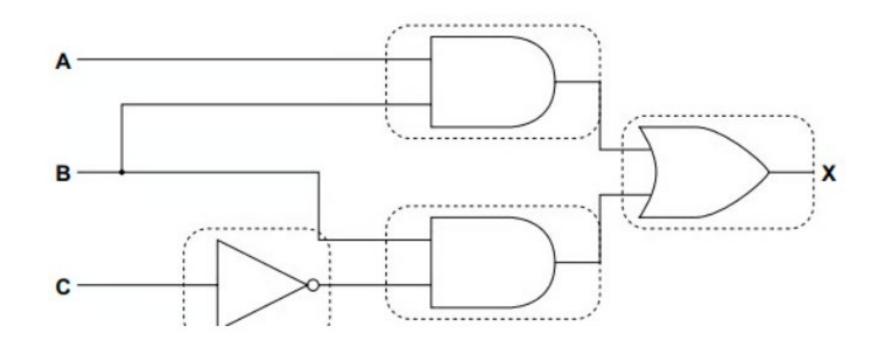
Α	В	Output
0	0	1
1	0	0
0	1	0
1	1	1

X = (A AND B) OR (B AND NOT C)

Draw a logic circuit for this logic expression.

-Each logic gate must have a maximum of **two** inputs.

Do not simplify this logic expression.


X = (A AND B) OR (B AND NOT C)

Draw a logic circuit for this logic expression.

- Each logic gate must have a maximum of **two** inputs.

Do not simplify this logic expression.

The completed logic circuit would be:

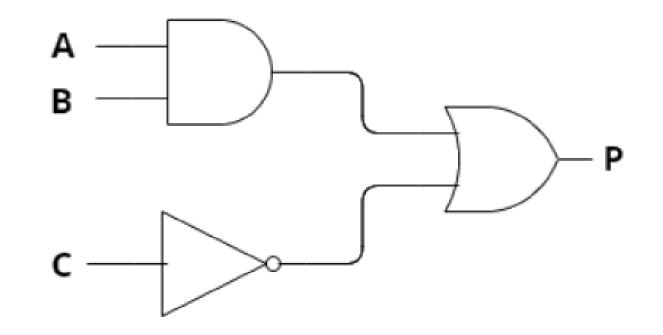
X = (A AND B) OR (B AND NOT C)

Complete the truth table from the given logic expression.

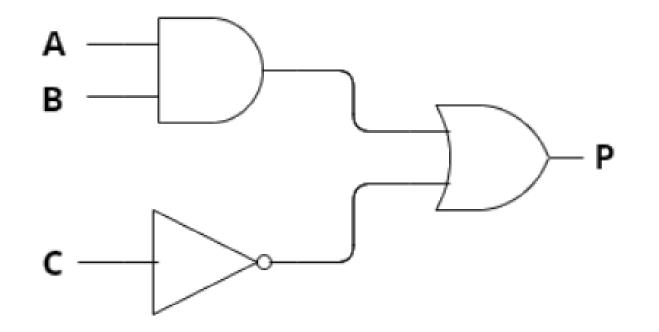
 Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
	1		1	1

X = (A AND B) OR (B AND NOT C)

Complete the truth table from the given logic expression.

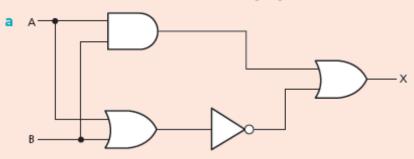

 Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
	1		1	1

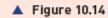
Α	В	С	X
	-		X
 0	0	0	0
0	0	1	0
0	1	0	1
0			1
0	1	1	0
1	0	0	0
1	0	1	0
1	U U	I	U U
1	1	0	1
1	1	1	1

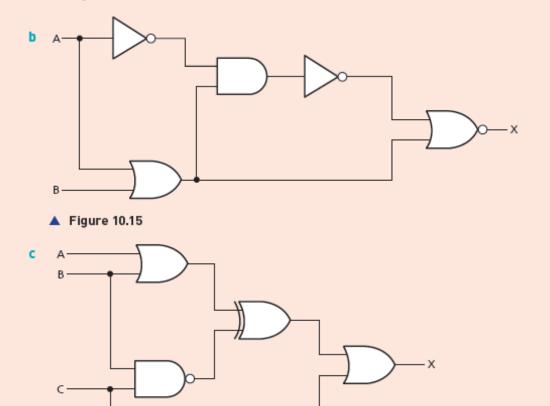

X = (A AND B) OR (B AND NOT C)

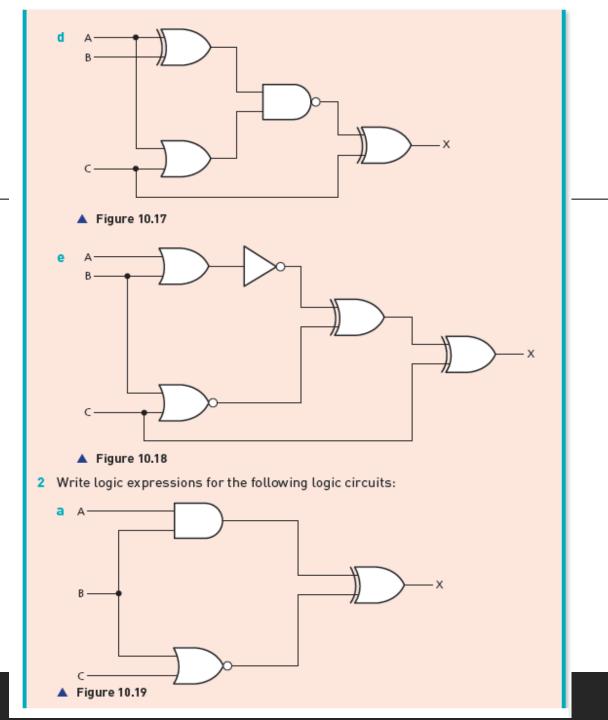
Write the Boolean expression represented by the logic diagram below:

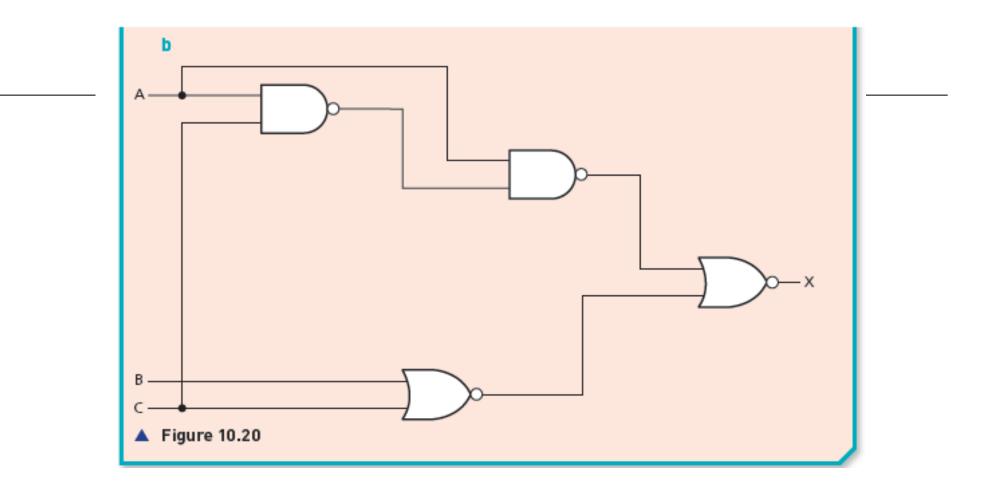
Write the Boolean expression represented by the logic diagram below:




The Boolean expression for the logic diagram can be expressed as:


- $P = (A AND B) OR (NOT C) OR P = (A ^ B) V (\neg C)$
- (A AND B) [1 mark]
- (NOT C) [1 mark]
- (A AND B) OR (NOT C) [1mark]


1 Produce truth tables from the following logic circuits:



A Figure 10.16

Activity 10.3

1 Produce:

.

i a truth table

II a logic circuit

from the following logic expression:

(NOT A AND B) AND (NOT B OR C)

2 Produce:

a truth table

ii a logic circuit

from the following logic expression:

(A XOR B) OR ((B NOR C) AND B)

3 Produce:

a logic expression

ii a logic circuit

from the following truth table:

4 Write down a logic expression for each of the following truth tables:

в

0

1

0

1

С

0

1

0

1

0

1

0

1

A 0

0

1

1

в

0

0

1

1

0

0

1

1

х

1

0

0

1

х

0

1

1

1

1

0

0

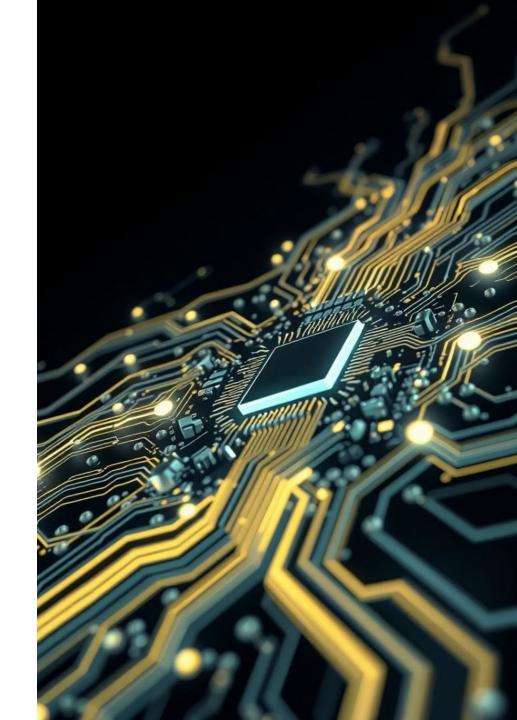
a				b
Α	В	С	х	A
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

5 a Write down a logic expression corresponding to the following truth table:

a vv110	write down a togic expres						
Α	В	С	Х				
0	0	0	1				
0	0	1	1				
0	1	0	0				
0	1	1	0				
1	0	0	1				
1	0	1	1				
1	1	0	0				
1	1	1	0				

b Show that the following logic expression produces the same output as your answer to part a above:

(NOT A AND NOT B) OR (A AND NOT B)


Sources

Watson, David, Williams, Helen. Cambridge IGCSE computer science

https://craigndave.org/videos/cambridge-igcse-topic-10-creating-logiccircuits/

https://www.youtube.com/@mrbulmerslearningzone

https://www.savemyexams.com/

